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ATOM is an open and growing public-private
partnership for accelerating drug discovery
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The goal of ATOM is to establish an open framework for generative
molecular design with human-level predictive models and active
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Status Summary
- Shared collaboration space at Mission Bay, SF
- Starting Year 4 of 5, ~20 FTEs engaged on R&D team

- New 501c3 structure with multiple pharma partners starting up in Jan 2021

R&D Program
Components

Establish open, curated data

sets ready for modeling

Covering safety, PK, and efficacy for
multiple targets

Partnerships to grow the data

Tools and frameworks for
predictive modeling R&D

AMPL model training pipeline released

Extending to multi-scale human system
models

Develop an open generative
molecular design platform

» High-performance multiparameter

optimization (gray loop) in place

 Demonstration and initial validation on

AURK cancer target

* Active learning loop (yellow) in progress
* Pilots projects on COVID-19 set with

ATOM

partners



READMEmd We gratefully acknowledge suppes

s
the Simons Foundation and member institUds
.

Al fields Rl Search

ATOM Modeling PipeLine (AMPL) for Drug Discovery

Created by the Accelerating Therapeutics for Opportunites in Medicine (ATOM) Consortium

AT OM

AMPL is an open-source, modular, extensible software pipeline for building and sharing models to advance in silico drug

discovery.

The ATOM Modeling PipeLine (AMPL) extends the functionality of DeepChem and supports an array of machine
learning and molecular featurization tools. AMPL is an end-to-end data-driven modeling pipeline to generate machine
learning models that can predict key safety and pharmacokinetic-relevant parameters. AMPL has been benchmarked on

a large collection of pharmaceutical datasets covering a wide range of parameters.

A pre-print of a manuscript describing this project is available through ArXiv. readthedocs are available as well here.

https://qgithub.com/ATOMconsortium/AMPL

arXiv.org > g-bio > arXiv:1911.05211 Search
Help | Advanced Search

Quantitative Biology > Quantitative Methods

AMPL: A Data-Driven Modeling Pipeline for
Drug Discovery

Amanda J. Minnich, Kevin McLoughlin, Margaret Tse, Jason Deng,
Andrew Weber, Neha Murad, Benjamin D. Madej, Bharath Ramsundar,
Tom Rush, Stacie Calad-Thomson, Jim Brase, Jonathan E. Allen

(Submitted on 13 Nov 2019 (v1), last revised 14 Nov 2019 (this version, v2))

One of the key requirements for incorporating machine learning into the
drug discovery process is complete reproducibility and traceability of the
model building and evaluation process. With this in mind, we have
developed an end-to-end modular and extensible software pipeline for
building and sharing machine learning models that predict key pharma-
relevant parameters. The ATOM Modeling PipeLine, or AMPL, extends the
functionality of the open source library DeepChem and supports an array
of machine learning and molecular featurization tools. We have
benchmarked AMPL on a large collection of pharmaceutical datasets
covering a wide range of parameters. As a result of these comprehensive
experiments, we have found that physicochemical descriptors and deep
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https://github.com/ATOMconsortium/AMPL
https://arxiv.org/abs/1911.05211

AMPL is the basis for ATOM student engagement
programs

. . Summer 2020 Intern Projects
« ATOM summer internships: y ’

e Six students from Butler University * Data Curation for a Mitochondrial Membrane
PharmD and UC Davis Potential Model
* Planning expansion for Summer 2021 e Public Datasets within AMPL
* Purdue University Data Mine * Visualize Data: Creating Interactive Plots to
Program: Improve Exploratory Data Analysis
* Support a data science team (~10 Working with Open Data Sources: PK DB,
students) Lombardo Dataset, and AstraZeneca

* Focusing on data analysis and
machine learning applications with

AMPL » Explainable 3D-CNN Models for Protein-Ligand
Binding

* Featurization and Analysis of COVID-19 data

* Six trainees among ATOM member

labs
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Predicting Volume of Distribution (VDss) in Humans

Performance of in silico Methods for a Large Set of Structurally Diverse Clinical Compounds
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2D 1. Mechanistic models for tissue partitioning with predicted
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Organs

Tumor

Pharmacokinetics (PK) Platform

Developed
physiologically-based
pharmacokinetics (PBPK)
model for human PK
prediction

Applied to human VDss
predictions

VDss Prediction Approaches

molecular  PK properties [] human VDss

structures

2. Mechanistic models for tissue partitioning using
experimental PK properties [ | human VDss

3. Allometric scaling of predicted animal VDss

4. Direct machine learning prediction of human VDss

Experimental Datasets

* Obach Lombardo (DMD 2018)

compounds with human PK
measurements

» ATOM collected in vitro PK data for

Plasma protein binding

Blood plasma partitioning

LogD
08 250 compounds
Adipocyte partitionin . .
posyiep — ¢ « Largest publicly-available
Myocyte partitioning in vitro and in vivo PK dataset

In silico VDss Prediction Evaluation

| e Comparison to
| experimental test
| set
| * For limited data,
| mechanistic
0 10 20 30 40 50 60 70 80 90 100

Percent within 2, 3, 10 fold models for tissue

: _ partitioning were
With enough animal and human VDss data, ¢itgct edebiife

learning models were able to predict
human VDss

ATOM mechanistic
Allometric: Rat
Allometric: Dog

Allometric: Rat and dog

Direct ML
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1TOM Generative Molecular Design loop

Proof-of-Concept
Generative molecular design of AURK B inhibitors

Candidate Panel

Efficacy
AURK B (pIC50 > 9)
AURK B/A Selectivity > 1000

Safety
BSEP (pICs, < 4)
hERG (plCs, < 4)

Initial Compound
Library (Property Prediction Pipeline\

(3k compounds)
Developability Design

Criteria

(" Molecular ) PK
Optimizer Solubility (>10muM)
N CLint (<3 mL/min/g)
W Developability
, _ Solubility (>10uM)
Decoder ' . e o Encoder

SAS: Synthetic Accessibility Score

QED: qQuantitative Estimation of Drug

Cancer relevant: >30 clinical trials for AURKA selective, likeness

AURKB selective, and AURKA/B dual inhibitors
Data available at ATOM: Potency data on ~24k 19
compound available for AURK B and/or AURK A

ATOM 7




~200 Compounds with high potency, selectivity,
and other favorable properties

AURK B vs. AURK A

Efficacy of generated compounds not in
ATOM database is well predicted

R%:AURKA:0.68 AURKB:0.75

AURK A pIC50 AURK B pIC50
10

e Non-ATOM .’
Compound (n=167)

e  Non-ATOM s
Compound (n=145)

Predicted pIC50
~
Predicted pIC50
~

4 5 6 7 8 9 10 4 5 6 7 8 9 10
Measured plC50 Measured pIC50

pIC150
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The generative model is creating a limited range
of new molecules

* Number of novel generated compounds Cumuiztue nique compoungs by generatr
falls off after 25-40 generations

600,000 evaluated, but only 36,553 unique

* Few top-ranking molecules discovered after
40 generations.

* Many in top 500 share common scaffold.

« Reasons:

» Greedy genetic algorithm converges on
narrow region of chemical space. Need to
adjust mutation rate, other parameters.

« VAE trained on project-specific compound set e
can only generate compounds with same
“vocabulary”. Training on more diverse set will = .
alleviate this limitation. °
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Training molecular generator with more compounds should lead
to an increase in chemical diversity of proposed solutions

= Project a lead compound into the molecular generator’s latent space >
= Optimize compound in latent space through guided search and small perturbations —>
- P

= Project new latent vector back into chemical space to create new compound

= Different lead compounds should encode to different parts of chemical space e O
- O\\
\
/ﬁrargeted \\ Molecular Generator ®) O \\ // o \\
Chemical Q . ;
Space ., ( > Molecular Optimizer \\ > \ , Q. O
%a'.‘ ' 'Qa% 7
O %E:*:O: Lk~ Targeted
........ L 2e%s e% e 1° Chemical
cet OO S — - O
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Our current encoders and decoders are trained on a limited data
set

Compound Evaluation
Working

Compound Design Criteria
Library Propose new
molecules

generative model

State of the art Junction Tree Variational Autoencoders are slow to train

— Direct realization of molecular graphs using tree decomposition and graph message passing network
— 24 hours on 1M chemical compounds using community implementation in PyTorch

Identify scalable neural network architecture
— Explore new generations of character-based sequence models

Encode the compound as SMILE string \O/\/‘K/Y@ > CN1C=NC2=C1C(=0)N(C(=0)N2C)C

— Simplified molecular input line entry system

Perturb the chemical’s latent representation

. NH,
Decode a new chemical

— Generational auto-encoder architecture HsC

Amphetamine and Methylhexanamine similarity.

By JU - Own work, CC BY-SA 3.0,

Evaluate chemical similarity to original compound NH, CHj ntths://commons.wikimedia.org/w/index.php?e
— Use Tanimoto similarity / distance metric CHs

HsC

)
Lawrence Livermore National Laboratory % %CASC NVYSE
r Security Administration

LLNL-PRES-816660 ’.0...’:.,.
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Expanding the diversity of molecular generation — scaling up the
training data

= [n this work we will scale up to a training data set of 1.613B compounds

= Enamine REAL database (synthesizable drug-like compounds)
— 1.36B chemicals - downloaded in the first quarter of 2020

= Enamine historical database
— 252M non-overlapping historical Enamine compounds downloaded in the first quarter of 2018

= Targeted chemical compound database (Mpro_inhib)
— 1 million additional purchasable compounds screened for SARS-CoV-2 main protease (Mpro)
inhibition activity

= Our test set is composed of a held-out set of 2M Enamine and 10K Mpro_inhib
compounds

_ _ KRCHE a1
Lawrence Livermore National Laboratory . »CASC N A‘S&f_%\ 12
*%e. . ’.. 04 National Nuclear Security Administration
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Propose new character-Wasserstein Autoencoder (cWAE) that
tackles issue of direct reconstruction required for lead optimization

= c(WAE is a class of autoencoder that addresses problems

with cAE and cVAE Output  CNIC=NC2=C1C(=0)N(C(=0)N2C)C
— character-based WAE version of original WAE [Tolstikhin et.al, 2017] 4 é Y
= Its basic structure is similar to cVAE but with a different Decoder
additional regularized penalty terms
— Additional term is implemented as a discriminator network D in
latent space Z that differentiate between sample drawn from a \ﬂ*ﬁ Diseriminatar
Gaussian prior N(0,1) and samples drawn from latent space (Qz) L' Laiserim
Latent space >
= Wasserstein term ensure better reconstruction and - Laav
variational sampling from latent space - ¢\
= Variational latent space allows both guided and novel Encoder S
compound generation @
= These characteristics enable small molecule design guided " I 4
by lead optimization compound Input  CN1C=NC2=C1C(=0)N(C(=0)N2C)C

BRI

Lawrence Livermore National Laboratory 24 ’. CASC N Sﬁf_ié 13
National Nuclear Security Administration

LLNL-PRES-816660 "0...’:.,.




Training at Scale with 1.613B compounds and 16,640 GPUs on
Sierra: Scalable Deep Learning Software Stack

LBANN MP] ]
Scalable Deep Learning Toolkit

DiHydrogen Hydrogen 7 h N

GPU-Accelerated GPU-Accelerated /--7---{ CUDA-aware MPI
Distributed Tensor Algebra | Distributed Linear Algebra | <

\ , ,,,—[ NCCL + MPI P2P
Aluminum l’:’:; .
L High-performance GPU-aware communication library ""‘{NCCL + NVSHMEM/

— - CPU-Only ---- GPU-Accel = Open-sourced on github.com
—  https://github.com/LLNL/Ibann
.. . . . —  bttps://github.com/LLNL/Elemental
= Optimized distributed memory algorithms it/ /ithub.com/LLNL/Ditvdrogen

—  https://github.com/LLNL/Aluminum

= Pythonic “PyTorch-based” model description

= Support for model exchange with PyTorch = C++ / MPI + OpenMP / CUDA / cuDNN / NCCL

Lawrence Livermore National Laboratory C ASC VS % 14

LLNL-PRES-816660 ’ 0

Nllonlllolsocuﬂfydm !J(


https://github.com/LLNL/lbann
https://github.com/LLNL/Elemental
https://github.com/LLNL/DiHydrogen
https://github.com/LLNL/Aluminum

The tournament method creates a single model instance that is
trained on a massive data set [Jacobs et al. 2017, 2019]

Entire supercomputer used to accelerate training = Scalability is maintained through parallelism
Within trainers: collective communication

Multiple trainers with independent, partitioned data sets
— Between trainers: point-to-point communication

Periodically exchange model with random peer

- = Benefits
— After one or more epochs of training o
— Scalable peer-to-peer communication
= Run local tournament to select current or exchanged model _  yse parallel resources to reduce total time to train

= Continue training using winning model

Tournament Model Tournament Modeﬁrnamem Model‘)x Tournament Model

Scale up to largest HPC systems to train on the largest data sets

Lawrence Livermore National Laboratory 'S, % 15

e ¢
LLNL-PRES-816660 RN N.;M 1 Nuclear Security Admins .m




LBANN enabled Training of Models at Scales Previously

Unobtainable :
Test Error % Valid Recon.

Avg. Tanimoto

= Optimized data ingestion scaled training to 1.613B L Distance

compound data set on up to 4160 nodes 88(1)2 g?;(s) 38;421 gggg
= Reconstruction error of ~0.025 was good enough 0.024 111 70.68 0.244

— Better than prior state of the art 0.058 54.66 45.3 0.434

— Sufficient Tanimoto distance for domain scientists 2048

-0.023 @1 -8 16

= Asynchronous LTFB algorithm enables scaling 5,095, G 8

without loss of model quality 512 '

— Non-overlapping partition of the data set provided linear 2 0.025 @2 0.024 @ 3

performance gains with more trainers ()
£ 0.024 @ 3 0.025@6

2 Trainri]ng time with 8 GPUs per trainer was faster per % 128 0.025 @ 6 0.023 @15

epoc o,

— Took more epochs to achieve similar accuracy iy 32 0.024 @01(2)25 i, 0025 (jzzs —
= Reducing # of trainers reduced # of iterations 0.024 @ 46

required to meet fixed reconstruction error 0.025 @ 99

— 16 GPUs per trainer required fewer epochs 8

64 256 1024 4096
Nodes
Lamﬁggss_lgi\elgegmore National Laboratory ’::f. CASC Nlmy A!%:?% 16



LBANN+LTFB enables improved time to solution with additional
compute resources

Increasing trainers reduces time required to 4160 #2048 1024 =512
train to fixed accuracy with 1.613B samples \ 256 -+128 -s64

— 1.79x speedup at 256 nodes vs 64 nodes
— Parallel efficiency of 44.65%

Changes the time-to-insight from a
compute-limited issue to a human-limited one

— 32 minutes @ 256 nodes to 0.025 recon. error
— 23 minutes @ 4160 nodes to 0.025 recon. error

Test Error (lower is better)
o
[IRY

Running at 4160 nodes achieves 17.1% peak
efficiency of FP16/acc FP32

— 18% speedup for 4160 nodes vs 2048 nodes

— 2.39x speedup with 4160 nodes vs 64 nodes
* Parallel efficiency of 3.68%

0.01

500 1000 1500 2000 2500 3000 3500
Total Runtime (s)

- ) GPUs/trainer | Trainers | Epoch time | PFLOPS
= The ability to operate at this scale unlocks a 16 1040 725 2533
new frontier for NN architecture design 8 2080 137 s 318.0

Table 6. Peak performance training with 4,160 nodes on Sierra.

PRI —’
Lawrence Livermore National Laboratory % $CASC N Sﬁf_ié 17
(X34 :‘ ¢ National Nuclear Security Administration
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cWAE Outperforms State-of-the-Art Junction-Tree-VAE for
molecular reconstruction

= Improved Tanimoto distance ensures that reconstructed compounds have chemical similarity
to original compound

= C(WAE is faster to train and use for inference than JT-VAE

= Next steps are to integrate c WAE into ATOM design loop

Model Train Size Test Size Percent Valid Compound Average Tanimoto
Reconstruction Rate Distance

JT-VAE

(state of the art) 1M Mpro 10K Mpro 100 1.63 0.553

cWAE 1M Mpro 10K Mpro 85.41 83.27 0.146

cWAE 1613M Combo 10K Mpro 42.45 33.03 0.601

cWAE 1613M Combo| 10K Combo 92.70 90.14 0.080

Table 2. Summary of model accuracy. Metrics include percent of valid decoded SMILES strings (Percent Valid), Compound
Reconstruction Rate and Average Tanimoto Distance between the encoded and decoded molecule (Average Tanimoto Distance,
lower is better).

100 e

Lawrence Livermore National Laboratory 2 S CASC N Sﬁf_ié 18
o National Nuclear Security Administration
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Lessons Learned: Deep learning at scale exposes unforeseen
challenges -- Power swings

= What happens when the power company calls you to see what you just did?

= Deep learning at scale has center-wide impact — half-precision TensorCores lead to

dramatic power swings:
— Periodic 2-3 MW swings caused concern from power company

— Asynchronous learning algorithm minimized center-wide power swings
» Reduced power swing from >200KW per-row to <120KM (each row is 20 racks with 360 nodes)

BRI

LLNL-PRES-816660 RATRE

Lawrence Livermore National Laboratory 2 Y CASC N Sﬁ;o‘i“ 19
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The ATOM generative molecular design loop runs in a hybrid cloud — HPC
workflow environment

T B Wi re ',J 2,
| HPCWorkers
;




LBANN: Livermore Big Artificial Neural Network Toolkit

— Optimize for strong & weak scaling

= Deep Neural Network training / classification Trainer 0 Peer-wise communication Trainer 1
[ J [ ] [ ] [ J [ [

— Train large networks quickly

Model M, - Layer Hy Model M, - Layer H,

— Enable training on data samples or data sets too
large for other frameworks

Model M, - Layer Hy Model M, - Layer Hq

* Billion sample data sets
— Optimized distributed memory algorithms

— Multi-level parallelism (model / data / ensemble)

Nomenclature:

= Trainer:
— Unique set of HPC resources
— Contains one or more neural network models

— Independent set of data

— Implements model and data parallelism DPyMB,  DP,MB, DP, MB,
Input Data Partition 0 from Lustre

DP; MB, DP4 MB, DP{ MB,
Input Data Partition 1 from Lustre

PRI P
Lawrence Livermore National Laboratory % CASC N IS&% 23
'0‘."’"
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